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1. Motivation

Yang-Mills theory, of self-interacting gluons, is not a full description of the strong interac-

tion occurring in Nature, but even on its own it is remarkably rich. At low temperatures,

it is a confining theory, describing a world of color-neutral particles. At high tempera-

tures, Yang-Mills theory describes weakly-interacting color-charged deconfined particles in

a plasma. This exactly mimics the behavior of QCD. However, unlike QCD, pure gauge

theory has an exact global symmetry associated with the change from a confining to a

deconfining theory, giving a strict finite-temperature phase transition. For a more general

gauge theory where the number of gluons is increased e.g. SU(N), there are hints of a

simpler description in terms of string dynamics in the limit N → ∞ [1], a limit which ap-

pears surprisingly close to the real world with N = 3 [2]. There is evidence of an effective

string theory which describes the excitations of the color flux tube, the QCD string, in the

confined phase of the gauge theory [3]. Yang-Mills theory is also a testing ground for ideas

about what are the relevant degrees of freedom that lead to confinement, possible candi-

dates being center vortices, monopoles, instantons or other topological features [4]. From a

practical viewpoint, lattice simulations of pure gauge theory are much less computationally

intensive than those of full QCD, allowing some questions to be answered in greater detail.

The global symmetry relevant for the deconfinement transition in pure gauge theory

is the center symmetry [5]. Finite-temperature T in the gauge theory means the Euclidean

time direction is of finite extent 1/T and physical quantities are periodic in this direction.

For gauge group G, the gauge fields themselves are only periodic in the time direction

up to a gauge transformation. The gauge transformations can be twisted globally by

z ∈ H, the center of the group G. The center is the largest subgroup whose elements

commute with all elements of the full group. This is an exact global symmetry of Yang-Mills

theory at finite temperature. At low temperatures, the theory is confining and the center

symmetry is intact. At the critical temperature Tc where the theory becomes deconfining,

the center symmetry is spontaneously broken. Hence deconfinement in pure gauge theory

is a strict phase transition. Quarks break the center symmetry explicitly, so the switch

from confinement to deconfinement in QCD is a crossover.
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Over the years, the finite-temperature deconfinement phase transition in Yang-Mills

theory has been studied in great detail and non-perturbative lattice simulations have played

a decisive role. One can test ideas about the deconfinement transition by varying the gauge

group and the space-time dimensionality. Let us summarize what is currently known. If the

deconfinement transition is of second order, with a diverging correlation length ξ, Svetitsky

and Yaffe conjectured that the universal properties of the transition are identical to those of

the ordering transition of a spin model in one lower dimension. In particular, the symmetry

of the spin system is the center of the gauge group [6]. For SU(N), the center is Z(N), the

complex N -th roots of 1. In (3 + 1) dimensions, SU(2) gauge theory does have a second

order deconfinement transition [7] and its universal properties, e.g. how the correlation

length diverges near the critical temperature,

ξ ∝ (T − Tc)
−ν , (1.1)

are identical to those of the 3-dimensional Z(2)-symmetric spin system i.e. the Ising model

[8]. Most relevant to Nature, (3+1)-dimensional SU(3) gauge theory has a weak first order

deconfinement transition with a large but finite correlation length [9], and the Svetitsky-

Yaffe conjecture does not apply. Continuing this sequence in (3 + 1) dimensions, SU(N)

gauge theories continue to have first order deconfinement transitions for N ≥ 4, with

the transition becoming stronger as N increases [10]. In (2 + 1) dimensions, the story

is somewhat different, with SU(2) and SU(3) gauge theories both having second order

transitions, belonging to the universality classes of the 2-dimensional Z(2)- and Z(3)-

symmetric spin models respectively [11]. For SU(4) the transition appears very weak but

it is not possible to rule out that it is first order, especially as the Z(4) universality class

has a set of continuously varying critical exponents [12].

It is clear that (3 + 1)-dimensional SU(N) gauge theory has a deconfinement tran-

sition that switches from second to first order as N increases. However, as the center

Z(N) also varies, it’s not possible to separate the size of the group from the change in

the center symmetry. An alternate sequence one can consider is that of the symplec-

tic groups Sp(N), whose center is Z(2) for all N . The group Sp(N) has N(2N + 1)

generators and there is a common member Sp(1) = SU(2). Hence one can study the

effect of the size of the group on the deconfinement transition without changing the sym-

metry class. What was found is somewhat surprising [13]. In (3 + 1) dimensions, the

Sp(N) deconfinement transition changes from second to first order going from N = 1

to N = 2. In (2 + 1) dimensions, Sp(N) gauge theory has second order deconfinement

transitions for N = 1 and 2, but it becomes first order for N = 3. All second order

transitions belong to the expected Z(2) universality class. This is the same qualitative

behavior as for SU(N), but in this case the center symmetry is unchanged and one might

a priori expect the nature of the deconfinement transition to be the same for all gauge

groups.

A crude argument one can make in favor of first order deconfinement transitions for

large groups is the mismatch of degrees of freedom at the critical temperature. As the

size of the group increases, so does the number of deconfined gluons in the plasma phase,

while the number of color-neutral states in the confined phase is unchanged. The results
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for Sp(N) indicate that the size of the group seems to dictate the order of the transi-

tion, as the Z(2) universality class is available for all N , but the gauge theory chooses

not to avail of it as N increases. The situation is actually similar for SU(N) in (3 + 1)

dimensions. It turns out that the ordering transitions of 3-dimensional Z(N)-symmetric

spin models for N ≥ 5 all belong to the universality class of the 3-dimensional U(1)-

symmetric XY model: the Z(N) symmetry is enhanced to U(1) at the critical point

[14]. However, the SU(N) gauge theories have first order deconfinement transitions for

N ≥ 3 and choose not to utilise the available universality class. A further surprise is

given by the exceptional group G(2), which has 14 generators and whose center is triv-

ially 1. With a trivial center, there is no distinction between the confined and decon-

fined phases and one would expect the deconfinement transition to be a crossover with-

out any singularity [15]. In fact, it appears that (3 + 1)-dimensional G(2) gauge theory

actually has an unexpected first order finite-temperature deconfinement transition [16].

Again, the size of the group, measured for example by the number of generators, seems to

drive the transition first order, independent of the symmetry associated with the transi-

tion.

The purpose of this paper is to add one more datum to this collection of results. We

examine SU(5) gauge theory in (2 + 1) dimensions, the smallest group which has not yet

been studied in this space-time. Comparing to the known results for SU(N) and Sp(N)

gauge theory, one would expect the SU(5) deconfinement transition to be of first order.

The SU(4) transition is very weak and possibly belongs to the Z(4) universality class,

but could also be first order. The Sp(3) deconfinement transition is weak but clearly

of first order. A first order transition for SU(5) would be consistent with the general

notion that the size of the group dictates the order of the transition, and we test the

idea with this study. There are additional reasons to expect a first order deconfinement

transition for this theory. The relevant spin model for SU(5) is the 2-dimensional Z(5)-

symmetric spin model, for which no universality class is known. In fact, the ordering

transition of the Z(N) Potts model in 2 dimensions is of first order for N ≥ 5 [17].

Interestingly, the correlation length of the Potts model at the critical point behaves as

[18]

ξ =
1

8
√

2
x

(

1 + O
(

1

x2

))

, x = exp





π2

2 ln 1
2

(√
N +

√
N − 4

)



 . (1.2)

which diverges as N → 4+ and is already on the order of a few thousand lattice spacings

for N = 5, indicating a very weak first order transition. This might be an indication that

the deconfinement transition of the gauge theory is first order but weak. In any event, we

wish to rule out any surprises by establishing the nature of the gauge theory transition

using lattice simulations.

In the course of writing this paper, we learnt of related work by Liddle and Teper

investigating the deconfinement transition of SU(N) gauge theories in (2 + 1) dimensions

for N = 4, 5 and 6 [19]. We believe they come to the same conclusion that SU(5) gauge

theory has a first order transition.
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2. Lattice details

We perform standard lattice simulations of (2 + 1)-dimensional SU(5) gauge theory. We

use a finite periodic lattice volume of size L2 ×Lt and lattice spacing a. The fundamental

variables are gauge links Ux,µ which are elements of the group SU(5). We use the standard

Wilson plaquette gauge action

S[U ] =
10

g2

∑

¤

(

1 − 1

5
ReTrU¤

)

=
10

g2

∑

x,µ<ν

(

1 − 1

5
ReTr(Ux,µUx+µ̂,νU

†
x+ν̂,µU †

x,ν)

)

, (2.1)

where g is the bare gauge coupling. The partition function is

Z =

∫

DU exp(−S[U ]),

∫

DU =
∏

x,µ

∫

SU(5)
dUx,µ. (2.2)

Finite temperature T in the gauge theory is related to the periodic Euclidean time extent

as Lta = 1/T . The relevant observable to examine the finite-temperature deconfinement

transition is the complex-valued Polyakov loop [20],

Φ~x = Tr

(

P
Lt
∏

t=1

U(~x,t),3

)

, (2.3)

given by a path-ordered product of the time-like gauge links. The gauge links in the time

direction are periodic up to a gauge transformation. The gauge transformation itself need

not be periodic but can be twisted by z ∈ Z(5). This center rotation leaves the action

S unchanged, hence this is an exact symmetry of the theory. However the Polyakov loop

picks up the twist Φ~x → zΦ~x because it wraps completely around the finite time direction,

so it is sensitive to the center. The Polyakov loop expectation value,

〈Φ〉 =
1

Z

∫

DU
1

L2

∑

~x

Φ~x exp(−S[U ]), (2.4)

measures the free energy F at finite temperature T of a static test quark sitting in the

box, 〈Φ〉 = exp(−F/T ). In the confined phase without isolated color-charged particles,

the quark free energy diverges, 〈Φ〉 = 0 and the center symmetry is intact, since 〈Φ〉 =

0 = 〈zΦ〉. Above the critical temperature Tc where the theory becomes deconfining, color-

charged particles in the plasma have a finite free energy, 〈Φ〉 6= 0 and the center symmetry

is spontaneously broken. Hence the deconfinement transition can be identified via the

behavior of the Polyakov loop.

3. Simulation results

We use standard methods in our lattice simulations. With the Wilson gauge action, we

generate ensembles of gauge configurations using heat-bath [21] and over-relaxation [22]

algorithms to update the various SU(2) subgroups of the SU(5) gauge links [23]. One can
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update all possible SU(2) subgroups, but this is likely to be an overkill and in practice we

update five randomly chosen subgroups. One sweep of the lattice volume corresponds to

one heat-bath and four over-relaxation updates of every gauge link.

The lattice spacing a is implicitly determined by the bare gauge coupling β = 10/g2

and the continuum limit is approached by taking β → ∞. In practice one simulates at a

number of β values and tries to extrapolate results to the continuum. One has to beware

of any possible unphysical transitions in the theory at finite β. If such a bulk transition

exists, this sets a lower limit on β i.e. an upper limit on the coarsest lattice spacing one can

use and still make a connection to continuum physics. In figure 1 we plot the expectation

value of the plaquette as a function of the bare gauge coupling on 63 volumes. We use

both ordered (“cold”) and random (“hot”) initial gauge configurations when generating

the ensembles, which we see give completely consistent results. We see no sign of a bulk

phase transition, which would be indicated by a jump in the plaquette average. One can

analytically calculate the plaquette expectation value at weak and strong coupling, which

to leading order give

1

5
〈ReTrU¤〉 = 1 − 8

β
(large β)

=
β

50
(small β). (3.1)

We see that both expansions match excellently the simulation results. For calibration, we

give some of the plaquette expectation values in table 1.

In our simulations to determine the nature of the phase transition, we consider Lt = 3, 4

and 5 and take the spatial extent as large as L = 48. For each Lt, there is a critical gauge

coupling βc which determines the lattice spacing corresponding to the critical temperature

Tc = 1/Lta(βc). Increasing Lt, the lattice spacing at the critical temperature is reduced

and the continuum limit is approached. In our production runs, for each β value and lattice

volume we perform at least 100,000 sweeps to generate the ensemble of gauge configura-

tions.

The Polyakov loop expectation value 〈Φ〉 is the order parameter which tells us if the

system is in the confined or deconfined bulk phase. In figure 2, we plot the Monte Carlo

history of the Polyakov loop average configuration by configuration for a particular lattice

size and temperature (the history is the sequence of gauge configurations generated by the

updating algorithms). The gauge coupling is chosen such that the temperature is close

to criticality. Because of the Z(5) center symmetry, there are five deconfined bulk phases

distinguished by Φ. We see that the system spends long periods in one bulk phase before

rapidly tunneling to another one. In addition to the periods where Φ 6= 0, the system

spends a considerable fraction of the time fluctuating around Φ ≈ 0.

Because we work at finite volume, the Polyakov loop average over all gauge configu-

rations will vanish, independently of the temperature, as the system can tunnel between

all possible bulk phases. Only in the infinite-volume limit is the tunneling suppressed and

〈Φ〉 6= 0. This makes it difficult to locate the critical temperature where the transition

occurs. To eliminate this problem, we use the modulus 〈|Φ|〉 to identify the bulk phases.
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β 〈ReTrU¤〉/5
2.0 0.04001(3)

4.0 0.08020(3)

6.0 0.12104(3)

8.0 0.16318(3)

10.0 0.20737(3)

12.0 0.25432(4)

14.0 0.30504(4)

16.0 0.36066(6)

18.0 0.42270(7)

20.0 0.48971(8)

22.0 0.55268(7)

24.0 0.60331(6)

26.0 0.64261(5)

28.0 0.67409(5)

30.0 0.70005(4)

32.0 0.72189(4)

34.0 0.74076(4)

36.0 0.75704(4)

38.0 0.77142(3)

40.0 0.78411(2)

42.0 0.79546(2)

44.0 0.80564(2)

46.0 0.81478(2)

48.0 0.82313(2)

50.0 0.83074(2)

52.0 0.83773(2)

54.0 0.84409(2)

56.0 0.85002(2)

58.0 0.85549(2)

60.0 0.86057(2)

Table 1: The plaquette expectation values 〈ReTrU¤〉/5 as a function of the bare gauge coupling

β = 10/g2 in 63 volumes. The errors are in parentheses.

This quantity is always non-zero but as the volume increases 〈|Φ|〉 ultimately vanishes in

the confined phase and remains non-zero in the deconfined phase. In figure 3 we plot the

probability distribution of |Φ| for the ensemble shown in figure 2. We see a clear double-

peaked distribution, where we identify the inner and outer peaks with the confined and

deconfined bulk phases respectively. The deconfined phase is slightly preferred, so the tem-

perature is probably slightly above criticality. The most important information is that it

looks like there is clearly coexistence of the confined and deconfined phases at the critical

temperature. This is an obvious signal of a first order deconfinement transition.
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Figure 1: The plaquette expectation value 〈ReTrU¤〉/5 versus the gauge coupling β = 10/g2. The

curves are the lowest order expansions for small and large β. The errors for the data are much

smaller than the symbol size.

To make the observation more quantitative, we measure the susceptibility of the

Polyakov loop

χ = L2[〈|Φ|2〉 − 〈|Φ|〉2]. (3.2)

The susceptibility is maximized at a temperature which we use to define the finite-volume

critical coupling βc,V . This will differ from other definitions of the critical coupling, but

all methods should agree in the infinite-volume limit. In addition, if the deconfinement

transition is of first order, the rescaled susceptibility maximum χmax/L
2 should be non-

zero as L → ∞.

For each lattice volume, we perform simulations at a number of gauge couplings β. To

determine where the susceptibility attains a maximum, we use the standard reweighting

method [24]. A number of ensembles over a range of β values are combined allowing us

to interpolate the value of χ for intermediary β values. This method works excellently

provided there is sufficient overlap among the different ensembles. In figure 4 we plot a

typical result using this method. This allows for an accurate determination of the critical

coupling βc,V at the susceptibility peak.

In figure 5 we plot the finite-volume critical couplings βc,V determined via reweighting

for Lt = 3. We extrapolate to the infinite-volume limit using the ansatz

βc,V = βc,∞ + a0
L2

t

L2
, (3.3)
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0.2

0.3

real Phi
imag Phi

Figure 2: The Monte Carlo history of the complex-valued Polyakov loop Φ. The lattice size is

402 × 3 and the gauge coupling β = 32.0513, which is close to the critical coupling for this volume.

The system spends long periods in different bulk phases separated by rapid tunnelings.

which we see is in very good agreement with the data. For the extrapolation of the

susceptibility peak, we use the fitting form

χmax

L2
= (

χmax

L2
)∞ + b0

L2
t

L2
. (3.4)

The data and extrapolation of χmax/L2 for Lt = 3 are plotted in figure 6. The fit is

reasonable although the data is not very precisely measured. More importantly, the peak

susceptibility in the infinite-volume limit (χmax/L
2)∞ is clearly non-zero. This is further

evidence that the deconfinement phase transition is of first order.

We find very similar results for Lt = 4 and 5, namely clear double-peaked distributions

of |Φ| and a non-zero extrapolated value for the peak susceptibility (χmax/L
2)∞. This is

good evidence that the first order deconfinement transition is physical and remains intact

after taking the continuum limit. In table 2 we list the extrapolated values for the critical

coupling and peak susceptibility.

The Polyakov loop is an extremely useful observable in determining the order of the

phase transition. In this case, the double-peaked distribution P (|Φ|) is a smoking gun that

it is first order. However one would like to see this also reflected in some thermodynamic

quantity. One such observable we call the latent heat

∆ =
1

5
(〈ReTrU¤〉d − 〈ReTrU¤〉c), (3.5)

which is given by the difference in the plaquette expectation value between the confined

and deconfined bulk phases. The latent heat is only defined at the critical temperature

– 8 –



J
H
E
P
0
1
(
2
0
0
6
)
0
2
3

0 0.1 0.2 0.3

|Φ|

2

4

6

8

P
r
o
b
a
b
i
l
i
t
y
 
d
i
s
t
r
i
b
u
t
i
o
n

Figure 3: The probability distribution of |Φ| in a volume of size 402 × 3 and gauge coupling

β = 32.0513, close to criticality. The double-peaked distribution indicates a first order phase

transition.

Lt βc,∞ (χmax/L
2)∞

3 32.0765(54) 0.00854(11)

4 41.113(12) 0.00685(13)

5 50.275(20) 0.00641(25)

Table 2: The critical gauge coupling and rescaled peak susceptibility for Lt = 3, 4 and 5, extrap-

olated to the infinite-volume limit. The estimated errors are in parentheses.

and strictly speaking only in the infinite-volume limit. In practice, at finite volume, one

can clearly identify using Φ which gauge configurations can be classified as being in the

confined or deconfined phase. This identification is only difficult when the system tunnels

from one phase to another, which is a very small subset of all the gauge configurations and

is not a serious problem. For a first order phase transition, the latent heat is non-zero, for

a second order transition, the latent heat vanishes.

In figure 7 we plot the distribution of the plaquette average for an ensemble of gauge

configurations in a large volume very close to the critical temperature for Lt = 3. For a first

order transition of typical strength, we would expect to see a double-peaked distribution

whose splitting is the latent heat. Dimensionally we expect ∆ ∼ T 4
c so in lattice spacing

units ∆a4 ∼ 1/L4
t , which on this lattice is ≈ 0.012. Since the distribution shows no such

splitting, it is clear that the latent heat is smaller than expected. We note that the latent

heat becomes much more difficult to measure as we approach the continuum limit, hence

we try to extract it at the coarsest lattice spacing we have used. For comparison, we plot
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Figure 4: The Polyakov loop susceptibility χ versus the gauge coupling. The data are obtained

from separate simulations and the curves are obtained using standard reweighting to combine the

various ensembles. The lattice volume is 282 × 3.

0 0.01 0.02 0.03 0.04

(L
T
/L)

2

31.8

31.9

32

32.1

b
e
t
a
c
r
i
t
,
V

Figure 5: The infinite-volume extrapolation of the critical coupling βc,V for Lt = 3, using a 1/L2

ansatz. The extrapolated value βc,∞ is shown slightly offset to the left.

– 10 –



J
H
E
P
0
1
(
2
0
0
6
)
0
2
3

0 0.01 0.02 0.03

(L
T
/L)

2

0.0078

0.008

0.0082

0.0084

0.0086

0.0088

(
P
o
l
y
a
k
o
v
 
s
u
s
c
e
p
t
i
b
i
l
i
t
y
)
m
a
x
/
L
2

Figure 6: The infinite-volume extrapolation of the susceptibility maximum χmax/L2, using a 1/L2

ansatz. The extrapolated value (χmax/L2)∞ is slightly offset to the left.

in figure 8 the plaquette distribution in (3+1)-dimensional Sp(2) gauge theory in a 203×2

volume, close to the first order deconfinement transition that occurs in this theory. We see

very distinct peaks with a separation on the order of the expected 1/L4
t . In this case, the

latent heat is clearly non-zero and the first order transition is of typical strength.

Although we only see a single peak in the plaquette distribution, we can still extract

the latent heat ∆ relatively accurately. Each configuration can be identified as being

in the confined or deconfined phase using Φ. We separate each ensemble into confined

and deconfined subsets and measure the plaquette expectation value in each. For a small

number of configurations, there is an ambiguity as to which subset they belong to, an

uncertainty we estimate by varying the cut used to separate the deconfined and confined

ensembles. In table 3 we list the measured latent heat for Lt = 3 in a number of volumes.

We see that there is some volume dependence. Using the value in the largest volume as

our best estimate of the infinite-volume latent heat, we obtain ∆/T 4
c = 0.0867(41). The

deconfinement transition is indeed first order, but by this measure is somewhat weak.

4. Discussion

As we stated at the outset, a first order deconfinement transition was expected in (2 + 1)-

dimensional SU(5) gauge theory and we found no surprises. The fact that the transition

appears to be weak, as measured by the latent heat, might even have been suggested by the

very large correlation length ξ in the 2-dimensional Z(5) Potts model at the critical point.

However, the effective action for the Polyakov loop has a complicated non-local form. That
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L ∆

16 0.00130(10)

18 0.00119(8)

22 0.00118(5)

28 0.00113(6)

34 0.00108(8)

40 0.00107(5)

Table 3: The latent heat ∆ at the critical temperature for Lt = 3. The estimated errors, in

parentheses, include the ambiguity in identifying which gauge configurations are in the confined

and deconfined phase.
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Figure 7: The probability distribution of 〈ReTrU¤〉/5 for SU(5) gauge theory in a volume 402× 3

at gauge coupling β = 32.0513, close to criticality. For a normal strength first order transition, one

expects two well-separated peaks.

it shares the dimensionality and global symmetry of the Potts model does not dictate its

functional form and ultimately the behavior of the deconfinement transition. It was very

unlikely to discover a new universality class for the phase transition of the gauge theory,

but since lattice simulations can give a definitive answer, we believe we have ruled out this

possibility.

Although is seems clear that the first order transition of SU(N) gauge theory increases

in strength with N , it has been suggested that the N → ∞ transition might be of second

order [25]. Then the weak first order transition for N = 3 in (3+1) dimensions would be a

small perturbation around the large-N limit, consistent with everything else known about

QCD phenomenology using the 1/N expansion. This might be an attractive scenario, but

it is completely opposed by all the evidence.
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Figure 8: The probability distribution of 〈ReTrU¤〉/4 for Sp(2) gauge theory in a volume 203 × 2

at gauge coupling β = 6.465, close to criticality. There are two clearly indentifiable peaks, whose

separation indicates a normal strength first order deconfinement transition.

The general picture appears consistent: where universality classes are available for

“small” gauge groups, the deconfinement transition is of second order and has the universal

properties of the ordering transition of the respective spin model. However the transition

switches to being first order as the gauge group increases in size, both in (2+1) and (3+1)

dimensions, even though there are available universality classes. It is even more surprising

that (3+1)-dimensional G(2) gauge theory has a first order transition, given that the center

is trivial. It is easy to correlate this general behavior with the size of the gauge groups and

speculate that the large number of degrees of freedom is the driving force. One hopes that

this collection of information can give some insight into the full behavior of the Polyakov

loop effective action or other properties of the gauge theory.
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[18] A. Klümper, A. Schadscheider and J. Zittartz, Z. Phys. B76 (1989) 247;

E. Buffenoir and S. Wallon, The correlation length of the potts model at the first order

transition point, J. Phys. A 26 (1993) 3045;

C. Borgs and W. Janke, J. Phys. I (France) 2 (1992) 649.

[19] This work is referred to in M. Teper, Large-N , PoS LAT2005 (2005) 256

[hep-lat/0509019].

[20] A.M. Polyakov, Thermal properties of gauge fields and quark liberation, Phys. Lett. B 72

(1978) 477;

L. Susskind, Lattice models of quark confinement at high temperature, Phys. Rev. D 20

(1979) 2610.

[21] M. Creutz, Monte Carlo study of quantized SU(2) gauge theory, Phys. Rev. D 21 (1980) 2308.

[22] S.L. Adler, An overrelaxation method for the monte carlo evaluation of the partition function

for multiquadratic actions, Phys. Rev. D 23 (1981) 2901; Overrelaxation algorithms for

lattice field theories, Phys. Rev. D 37 (1988) 458;

M. Creutz, Overrelaxation and monte carlo simulation, Phys. Rev. D 36 (1987) 515;

F.R. Brown and T.J. Woch, Overrelaxed heat bath and metropolis algorithms for accelerating

pure gauge monte carlo calculations, Phys. Rev. Lett. 58 (1987) 2394.

[23] N. Cabibbo and E. Marinari, A new method for updating SU(N) matrices in computer

simulations of gauge theories, Phys. Lett. B 119 (1982) 387.

– 15 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB313%2C417
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C53%2C420
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C53%2C420
http://xxx.lanl.gov/abs/hep-lat/9608099
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB276%2C472
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB374%2C225
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB374%2C225
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC28%2C471
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C129%2C709
http://xxx.lanl.gov/abs/hep-lat/0309153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB694%2C35
http://xxx.lanl.gov/abs/hep-lat/0312022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C129%2C712
http://xxx.lanl.gov/abs/hep-lat/0309062
http://xxx.lanl.gov/abs/hep-lat/0309008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CE%2C046107
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CE%2C046107
http://xxx.lanl.gov/abs/cond-mat/0301499
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB668%2C207
http://xxx.lanl.gov/abs/hep-lat/0302023
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C119%2C652
http://xxx.lanl.gov/abs/hep-lat/0209093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C54%2C235
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA26%2C3045
http://xxx.lanl.gov/abs/hep-lat/0509019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB72%2C477
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB72%2C477
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD20%2C2610
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD20%2C2610
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD21%2C2308
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD23%2C2901
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD37%2C458
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD36%2C515
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C58%2C2394
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB119%2C387


J
H
E
P
0
1
(
2
0
0
6
)
0
2
3

[24] A.M. Ferrenberg and R.H. Swendsen, Optimized Monte Carlo analysis, Phys. Rev. Lett. 63

(1989) 1195; New Monte Carlo technique for studying phase transitions, Phys. Rev. Lett. 61

(1988) 2635;

M. Falcioni, E. Marinari, M.L. Paciello, G. Parisi and B. Taglienti, Complex zeros in the

partition function of the four-dimensional SU(2) lattice gauge model, Phys. Lett. B 108

(1982) 331.

[25] R.D. Pisarski and M. Tytgat, Why the SU(∞) deconfining phase transition might be of

second order, hep-ph/9702340; Notes on the deconfining phase transition, hep-ph/0203271.

– 16 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C63%2C1195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C63%2C1195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C61%2C2635
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C61%2C2635
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB108%2C331
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB108%2C331
http://xxx.lanl.gov/abs/hep-ph/9702340
http://xxx.lanl.gov/abs/hep-ph/0203271

